目前的笔记本屏幕背光模式一般分为两种,一种是LED背光,一种是萤光灯背光模式
下面是介绍LED背光模式
发光二极管 (Light-emitting diode, LED)[1] 是一种半导体元件。初时多用作为指示灯、显示板等;随着白光发光二极管的出现,也被用作照明。它是21世纪的新型光源,具有效率高、寿命长、不易破损等传统光源无法与之比较的优点。加正向电压时,发光二极管能发出单色、不连续的光,这是电致发光效应的一种。改变所采用的半导体材料的化学组成成分,可使发光二极管发出在近紫外线、可见光或红外线的光。
优点
发光(能量转换)效率高 - 也即较省电。比灯泡高,但与萤光灯相约。[2]
反应(开关)时间快 - 可以达到很高的闪烁频率。
使用寿命长 - 达35,000 ~ 50,000小时,相对萤光灯为10,000 ~ 15,000小时,白炽灯为1,000 ~ 2,000小时。
耐震荡等机械冲击 - 由于是固态元件,相对萤光灯、白炽灯等能承受更大震荡。
体积小 - 其本身体积可以造得非常细小(小于2mm)。
便于聚焦 - 因发光体积细小,易于而以透镜等方式达致所需集散程度,藉改变其封装外形,方向性从大角度的散射以至集中于细角度都可以达到。
多种颜色 - 能在不加滤光器下提供多种不同颜色,而且单色性强。
色域丰富 - 白色LED覆盖色域较其他白色光源广。[3]
缺点
散热问题,如果散热不佳会大幅缩短寿命。
除非购买高级产品、否则省电性还是低于萤光灯(冷阴极管,CCFL),有些LED的省电性也低于省电灯泡。
初期成本较高。
因光源属于方向性,灯具设计需考量光学特性。
下面是介绍萤光灯背光模式
原理
荧光管内充满了低压氩气或氩氖混合气体及水银蒸气,而在玻璃荧光管的内侧表面,则涂上一层磷质荧光漆,在灯管的两端设有由钨制成的灯丝线圈。当电源接通后,首先电流通过灯丝加热并释放出电子,电子会把管内气体变成等离子,并令管内电流加大,当两组灯丝间的电压超过一定值之后灯管开始产生放电, 使水银蒸气发放出253.7nm 及185nm波长的紫外线,荧光管内侧表面的磷质荧光漆会吸收紫外线,并释放出较低波长的可见光。发出的光线颜色由磷质成份的比例控制,而玻璃管则避免有害的紫外线及其他有害物质如水银泄漏出来。
荧光管的放电电流与导通电阻之间存在一个正反馈关系:当更多电流流进荧光管后使得更多气体被离子化,使得管内的导通电阻不断降低,如此便会令更多电流入荧光管内。如果将荧光管直接接到固定电压的电源,荧光管将会因电流不断上升而很快被烧毁,因此需要以一个辅助电路控制进入荧光管的电流在一固定水平,而这个电流控制电路通常被称为镇流器。镇流器实际上是一个电感,当导通电阻降到很低的时候,镇流器固定的感抗和铜耗使导通电流近似于定值,开始稳定工作。传统镇流器需搭配一个称为启动器(Starter)的小元件才能使灯丝间的压差达到使荧光管足以放电的程度, 最新的电子式镇流器则不需要启动器,因为启动工作已被包含在镇流器内.
规格
日光灯管如果照直径来分类,可分成T2、T3.5、T4、T5、T6、T8、T9、T10、T12等规格,所谓的T5就是直径为5/8英吋(约16公厘)的日光灯管;T8直径为1英吋(约25公厘);T9直径为9/8英吋(约29公厘)的日光灯管。目前全世界的主流为T5、T6和T8,唯有台湾95%的市占率都是T9灯管[1]
优点
T8、T9荧光管与同一光度的传统电灯泡(白炽灯)相比有更高的发光效率,因为所消耗的能量中较高比例被转化为可见光,较少被转化为热能而浪费掉,所以使用中的同一光度的荧光管比白炽灯温度要低。白炽灯一般只能把大约10%的输入能量转化为可见光,同一光度的T8、T9荧光管一般只需前者消耗的约1/3至1/4的电能,使用寿命亦较传统灯泡长大约10至20倍之多。
虽然T8、T9荧光灯的购买成本略高于白炽灯,但它可节省更多能源及电费,较长的寿命亦令其更换成本相对下降,对商业而言亦可节省更换灯泡的人力成本。
缺点
荧光管未能提供稳定的光源,而是闪烁的光源,其闪烁频率与驱动电压的频率有关,虽然人眼不易察觉,但可产生闪光灯效应(strobe effect),在一些工作环境可能造成危险,例如转动的风扇,假如其频率与荧光管相同,就会看似停止不动。荧光管亦会令摄录机拍摄的片段出现闪烁,虽然传统灯泡亦会出现闪烁,但其强度则较低。荧光管亦不能使用标准的亮度调节开关。
目前电子式安定器已经基本解决这个问题。传统的电感镇流器采用市电(频率为50~60Hz)直接驱动荧光管,而电子式安定器采用高频振荡反馈式镇流(高频开关切换式谐振电路限流),其输出的驱动电压频率已大大提高,荧光管的闪烁频率也相应提高,人的肉眼已经不会被这种高频闪烁影响。
目前国际大厂已经开始陆续停产T9灯管,改而推广新一代的T5灯管,可以预期在供给量减少的情况下,T9灯管将会逐渐变贵且慢慢被淘汰。 |
关于我们